一个色谱柱管路和配件必须填有决定分离效果的色谱柱填料[固定相]。它必须能够承受生产过程和使用中的反压。而且,它必须是样品入口和分离的谱带出口控制良好[无泄漏,最小体积和零死体积]的流路,而且相对于分离系统[样品,流动相和固定相]来说具有化学惰性。为承受尽可能高的压力,大多数色谱柱由不锈钢制成。当分析特殊化学品或生物制品需要惰性表面材料时,也可能会用到尽管只能承受较小压力的 PEEKTM [一种工程塑料] 和玻璃[图 M-1]。
玻璃制色谱柱壁有视觉优势。在图 M - 2 的照片中,当样品谱带还在色谱柱中,传输被停止。你可以看到样品混合物中的三种染料已经在床层中分开,黄色分析物移动最快,将要流出色谱柱。
图 M-2: 色谱柱内部
分离性能 - 分离度
两种化合物分离的程度称为色谱分离度[RS]。 由色谱柱决定的总体分离能力或分离度的两个主要的因素是,机械分离能力:由色谱柱长度,粒径和填料床层的均一性决定,和化学分离能力:由填料和流动相对化合物的物化竞争决定。效率是衡量机械分离能力的指标,选择性是化学分离能力的指标。
机械分离能力 - 效率
如果色谱柱床稳定均一地填充,它的分离能力就由柱长度和颗粒大小决定。机械分离能力,也叫效率,通常以塔板数[符号是N]来测量和比较。较小颗粒色谱床有较高效率和反压。对于固定的颗粒大小,增加色谱柱长度可获得更强的机械分离能力。然而,代价是色谱运行时间延长,更多溶剂消耗和更高反压。减少色谱柱长度可以减小以上变量但也降低了机械分离能力,如图 N 所示。
图 N: 色谱柱长度和机械分离能力 [相同颗粒尺寸]
图 O: 粒径和机械分离能力 [相同色谱柱长度]
化学分离能力 - 选择性
选择一种颗粒化学[固定相]和流动相的组合--分离系统--将决定化学分离能力[我们改变每一种分析物的速度的方法]的程度。优化选择性是创造分离最强有力的方式,这样可避免对最高机械效率的无尽追求。要产生对任何两种化合物的分离,科学家需在多种条件的相组合[固定相和流动相]中和保留机制[色谱模式]中选择。这些在下一节中探讨。