Waters[™]

アプリケーションノート

A Multi-Residue Method for the Analysis of Pesticides in Cannabis Using UPLC-MS/MS and APGC-MS/MS to Meet Canadian Regulatory Requirements

David James, Nichole Taylor, Christopher Stadey

Bloom Labs at Perennia Laboratories, 日本ウォーターズ株式会社

Abstract

This application note presents the use of a simple sample extraction and d-SPE (dispersive solid phase extraction) cleanup where the resulting extract is analyzed by UPLC-MS/MS or APGC-MS/MS.

Benefits

- Sensitive and reproducible workflow for screening cannabis for the Canadian list of pesticides
- Minimal sample preparation followed by rapid UPLC and GC separations
- UPLC-MS/MS and APGC-MS/MS analysis of the same sample extracts on one tandem quadrupole mass spectrometer
- Analysis of large suites of pesticides in a single injection per chromatographic inlet
- Analysis of cannabis at legislatively relevant levels

Introduction

Health Canada requires mandatory testing for the presence of pesticide residues in cannabis before the product can be sold to consumers.^{1,2} The regulations are present to ensure the highest safety and quality standards possible when it comes to the supply of cannabis for medical or recreational use. To adhere to testing requirements, licensed cannabis producers must demonstrate that no unauthorized pesticides have been used on their products and that there is no contamination of the products within the limits set out by Health Canada. Currently, the target list consists of 96 pesticides, with limits of quantitation as low as 20 ppb in dried cannabis. Tandem mass spectrometry is a sensitive and selective technique. When coupled with both gas (GC) and liquid chromatography (LC), it provides a comprehensive analysis for a wide range of pesticide residues with sufficient sensitivity to meet the Health Canada regulations. The advantage of ultraperformance liquid chromatography (UPLC) coupled with tandem quadrupole mass spectrometry (MS/MS) for multi-residue pesticide analysis is widely reported.³ More recently, the use of GC-MS/MS operated at atmospheric pressure (APGC) has been shown to offer significant improvements in performance over EI for challenging pesticides, in terms of selectivity, specificity and speed of analysis.^{4,5} Regulations for cannabis testing will most likely evolve and possibly become even more rigorous. The use of both LC-MS/MS and GC-MS/MS ensures system flexibility that can be adapted in the event that more pesticides are regulated.

In this Application Note, we present the use of a simple sample extraction and d-SPE (dispersive solid phase extraction) cleanup where the resulting extract is analyzed by UPLC-MS/MS or APGC-MS/MS. A single workflow for the multi-residue analysis of pesticides in cannabis is demonstrated. Utilizing the universal source of the Waters Xevo TQ-S micro allows for LC and GC analyses to be completed on the same tandem quadrupole MS instrument. The performance of the method will be highlighted in terms of sensitivity, recovery, and linearity for both LC and GC analysis.

Experimental

Materials and reagents

1. Pesticide standards

Pesticide analytical standards were purchased from LGC Standards. Mix 1 consisted of 35 pesticides at 50 ppm in acetonitrile, Mix 2 consisted of 45 pesticides at 100 ppm in acetonitrile, and Mix 3 consisted of 14 pesticides at 100 ppm in toluene. Dimethomorph was also purchased from LGC Standards at 10 ppm in acetonitrile. Benzovindiflupyr was purchased separately from Chem Service at 100 ppm in methylene chloride solution. All 96 pesticides were combined in a 1 ppm stock solution of each.

2. Reagents

LC-MS-grade methanol, LC-MS-grade acetonitrile, and RO (reverse osmosis) water were all purchased from Fisher Scientific and were used as received. Formic acid was purchased from Waters (p/n: 186006691) and was used as received.

3. Miscellaneous

Helium and argon gases were obtained from Air Liquide. A Thermo Fisher Scientific vortex (0-3200 rpm), a Fisher Scientific accuSpin 400 centrifuge, a Fisher Scientific 60L gravity oven, and a Mettler Toledo AE50 analytical balance (0.1 mg) were all used in the sample preparation procedure.

Sample preparation

Preparation

The representative samples were dipped in liquid nitrogen and frozen before grinding. After freezing, but before grinding, all stems and seeds were removed from the sample. The ground sample was equilibrated to room temperature. Several 0.5-g portions of ground cannabis were weighed. The initial mass was recorded. To ensure that all the liquid nitrogen had evaporated, and an accurate sample mass was obtained, the sample sat on the scale until there was <1 mg change in mass over a 10-minute period.

Pesticide extraction

The 0.5-g samples of ground cannabis were placed in a 10-mL centrifuge tube and 5 mL of LC-MS/MS-grade acetonitrile was added. The sample was then vortexed for five minutes followed by centrifugation at 5000 rpm for five minutes. One milliliter of the supernatant was removed and used in the clean-up step.

Clean-up

One milliliter of the supernatant from the pesticide extraction was placed in a d-SPE cartridge (150 mg MgSO₄, 50 mg PSA, 50 mg C₁₈, and 7.5 mg graphitized carbon black). The cartridge was shaken for one minute and centrifuged for five minutes at 5000 rpm. The resulting cannabis extracts were directly pipetted into clean 2-mL vials in preparation for analysis by LC-MS/MS and APGC-MS/MS.

Calibration preparation

Calibration standards were made using a stock solution of 96 pesticides (1 ppm stock). Matrix-matched calibrations were used to ensure that the signals obtained in the analysis were representative of what the signal would be in cannabis samples. Standards ranging from 1–6400 ppb were made to accommodate the different ionization efficiencies of all analytes. Pesticides with low detection limits used the lower concentration standards and the pesticides with higher detection limits used higher concentration standards for their calibration curves.

Instrumentation and software

A Waters ACQUITY UPLC H-Class PLUS System coupled with a Waters Xevo TQ-S micro Tandem Quadrupole Mass Spectrometer (MS/MS) with electrospray as the ionization mode was used to carry out the analysis of

84 of the pesticides by LC-MS/MS (see Appendix A). An Agilent 7890B gas chromatograph (GC) coupled with a Waters Xevo TQ-S micro Tandem Quadrupole Mass Spectrometer was used to carry out the analysis of the remaining 12 pesticides with APGC as the ionization mode. A nitrogen generator (Peak Scientific) was used as the source of the N₂ gas. MassLynx MS Software v4.2 was used for data acquisition and processing for both LC-MS/MS and GC-MS/MS methods.

UPLC conditions

Separation mode:	Gradient
Column:	ACQUITY UPLC BEH C $_{18}, 1.7~\mu\text{m}, 2.1 \times 100~\text{mm}$
Solvent A:	Methanol
Solvent B:	Water
Solvent C:	2% formic acid in RO water
Flow rate:	0.500 mL/min
Column temp.:	60 °C
Sample temp.:	10 °C
Injection volume:	2 μL

Gradient table:

Time	%A	%B	%C
(min)			
0	2%	93%	5
8	95%	0%	5
9	95%	0%	5
9.1	2%	93%	5

Time	%A	%B	%C
(min)			
12	2%	93%	5

Xevo TQ-S micro conditions

Ionization mode:	ESI+
Capillary voltage:	1.2 kV
Cone voltage:	30 V
Collision energy:	Various eV (see Appendix)
Desolvation temp.:	600 °C
Source temp.:	150 °C
Desolvation gas flow:	1000 L/hr
Cone gas:	50 L/hr

All MS/MS parameters including precursor ion (m/z), product ion (m/z), cone voltage (V), and collision energy (CE) for the 84 pesticides analyzed by LC-MS/MS can be found in Appendix A.

GC conditions

GC system:	Agilent 7890B
Column:	Agilent DB-5 MS (30 m \times 0.250 mm \times 0.25 $\mu m)$
Carrier gas:	Helium
Flow rate:	2 mL/min
Injection type:	Pulsed splitless

Injector temp.:	280 °C
Equilibration time:	1.5 min
Injection volume:	2 μL
Makeup gas:	Nitrogen at 350 mL/min

GC oven program

Rate	Temp.	Hold
(°C/min)	(°C)	(min)
-	60	0.45
18.7	320	3.65

Total run time = 18.0 min

GC-MS/MS parameters

MS system:	Xevo TQ-S micro
Ionization mode:	APGC+
Corona:	2.0 μΑ
Transfer line temp.:	320 °C
Source temp.:	150 °C
Solvent delay:	3.5 min
Acquisition mode:	MRM

All MS/MS parameters including precursor ion (m/z), product ion (m/z), cone voltage (V), and collision energy (CE) for the 12 pesticides analyzed by GC-MS/MS can be found in Appendix B.

Method development and optimization

LC-MS/MS and GC-MS/MS data analysis

The UPLC and GC parameters were optimized to ensure adequate separation of pesticide peaks with reduced background noise and optimum peak shapes. Upon completion of the sample run, a "multiplier" must be input into the UPLC and GC to account for the dilutions and sample mass weighed. The following formula is used to calculate the multiplier:

 $Multiplier\% = \frac{Vextraction}{Mass} \times 100$

where Vextraction is the total volume of the extract used (5 mL) and Mass is the mass of the dried cannabis weighed for the extraction (0.5 g). This will convert all results in ppb in cannabis (µg of pesticide/g of cannabis).

Validation of method (sample spiking and recovery)

To validate the method, sample spikes were performed on ground cannabis prior to the extraction and clean-up. The pesticide mixes were spiked into 0.5 g of fresh ground "pesticide-free" cannabis samples. Extraction and clean-up were performed resulting in 2000, 1000, 500, 250, 100, 50, 25, 10, 5, and 2 ppb spiked samples. After applying the multiplier (described above), the concentration of the pesticides mentioned above are 10x higher in the cannabis sample.

The spiking procedure was performed at nine different spike concentrations for each pesticide to obtain the limit of quantification (LOQ) for each individual pesticide. Once the LOQ was established, three spikes of each analyte at their respective LOQ were performed to obtain average spike recoveries and relative standard deviations (RSD) for each pesticide individually.

As shown in Table 1, spike recoveries for all pesticides at their LOQs averaged between 81.7% and 117.6%. The acceptable % recovery limits for method validation are between 70% and 120%. Low relative standard deviations (RSD) were also reported for all 96 spike recoveries (all <20%). The acceptable RSD for method validation is <20%.

It should be noted that the recovery for daminozide is determined separately since it is strongly retained by the PSA sorbent. For spike recoveries and to test for the presence of daminozide in cannabis samples, a separate LC-MS/MS run is performed following sample extraction but before clean-up.

#	Pesticide (conc. in ppb)	Average spike recovery (%)	RSD (%)	Method	#	Pesticide (conc. in ppb)	Average spike recovery (%)	RSD (%)	Method
1	Abamectin (20)	97.4	10.7	LC	49	Fluopyram (20)	85.9	2.5	LC
2	Acephate (20)	91.5	2.5	LC	50	Hexythiazox (250)	103.6	10	LC
3	Acequinocyl (100)	98.5	3	LC	51	Imazalil (50)	83.3	1.4	LC
4	Acetamiprid (50)	81.7	0.5	LC	52	Imidacloprid (20)	86.4	0.5	LC
5	Aldicarb (50)	105,7	2.9	LC	53	Iprodione (20)	115.1	6.5	LC
6	Allethrin (100)	84.6	2.5	LC	54	Kinoprene (5000)	96	4.8	GC
7	Azadirechtin (50)	99.5	5.3	LC	55	Kresoxim-methyl (20)	117.1	1.9	LC
8	Azoxystrobin (20)	91.3	14.9	LC	56	Malathion (20)	83.8	1.7	LC
9	Benzovindiflupyr (20)	110.8	8.8	LC	57	Metalaxyl (20)	91.1	2.8	LC
10	Bifenzate (20)	87.3	3	LC	58	Methiocarb (20)	106.9	8.2	LC
11	Bifenthrin (250)	93.5	14.5	GC	59	Methomyl (20)	82.2	2.5	LC
12	Boscalid (20)	93.8	16.1	LC	60	Methoprene (100)	100.5	3.3	LC
13	Buprofenzin (20)	82.8	3.3	LC	61	Methyl parathion (100)	101.2	11.3	LC
14	Carbaryl (20)	93.6	1.9	LC	62	Mevinphos I (20)	82	0.5	LC
15	Carbofuran (20)	86.5	5,1	LC	63	MGK-264 (500)	100.2	7.6	GC
16	Chlorantraniliprole (20)	90.7	16.7	LC	64	Myclobutanil (20)	98.5	3.1	LC
17	Chlorphenapyr (20)	97.3	14.3	LC	65	Naled (20)	91.1	9.3	LC
18	Chlorpyrifos (20)	117.6	3.2	LC	66	Novaluron (50)	107.4	0.8	LC
19	Clofentezine (20)	111.8	1.3	LC	67	Oxamyl (50)	84.7	3.9	LC
20	Clothiandin (20)	87.7	5.6	LC	68	Paclobutrazol (20)	85.4	6.3	LC
21	Coumaphos (20)	90.8	4.2	LC	69	Permethrin (100)	89.1	6.4	GC
22	Cyantranilipole (20)	84.4	2.9	LC	70	Phenothrin (20)	92.4	17.1	LC
23	Cyfluthrin (250)	109.9	13.4	GC	71	Phosmet (50)	106.3	12.1	LC
24	Cypermethrin (100)	98.4	16.1	LC	72	Piperonyl butoxide (50)	92.7	2.6	LC
25	Cyprodinil (20)	82	2.8	LC	73	Pirimicarb (20)	84.5	2.1	LC
26	Daminozide (100)	82	3.2	LC	74	Prallethrin (50)	109.5	5.4	LC
27	Deltamethrin (100)	111.9	7.2	GC	75	Propiconazole (100)	102.9	5.1	LC
28	Diazinon (20)	88.4	2.6	LC	76	Propoxur (20)	109.3	1.4	LC
29	Dichloryos (20)	87.3	4,5	LC	77	Pyraclostrobin (20)	83.9	3.1	LC
30	Dimethoate (20)	82.2	0.4	LC	78	Pyrethrin II (20)	109.1	4.6	LC
31	Dimethomorph (20)	98.3	4.9	LC	79	Pyridaben (20)	114.2	1.1	LC
32	Dinotefuran (20)	85.8	5	LC	80	Quintozene (250)	98.5	11.7	GC
33	Dodemorph (20)	87.4	8.4	LC	81	Resmethrin (100)	100.8	6	GC
34	Endosulfan-alpha (500)	107.6	12.4	GC	82	Spinetoram (50)	102.5	7.2	LC
35	Endosulfan-beta (500)	99.1	11.8	GC	83	Spinosad A (100)	95.4	7.7	LC
36	Endosulfan-sulfate (500)	89.3	0.9	LC	84	Spirodiclofen (20)	102	15.6	LC
37	Ethoprophos (20)	83.6	2.2	LC	85	Spiromesifen (100)	82.5	2.9	LC
38	Etofenprox (20)	90	6.7	LC	86	Spirotetramat (20)	88.6	3.7	LC
39	Etoxazole (20)	81.7	0.4	LC	87	Spiroxamine II (20)	90.1	6.7	LC
40	Etridiazole (500)	85.2	1.5	LC	88	Tebuconazole (20)	87.6	1.1	LC
41	Fenoxycarb (20)	91.9	12	LC	89	Tebufenozide (20)	104.5	9	LC
42	Fenpyroximate (20)	86.6	4.4	LC	90	Teflubenzuron (50)	94.4	5.2	LC
43	Fensulfothion (20)	89.1	1.8	LC	91	Tetrachlorvinphos (20)	92.9	9.8	LC
44	Fenthion (50)	102.2	5.5	LC	92	Tetramethrin (20)	82	5	LC
45	Fenvalerate (1000)	87,5	9.7	GC	93	Thiacloprid (20)	88.1	0.4	LC
46	Fipronil (50)	98.9	19.9	LC	94	Thiamethoxam (20)	84.6	0.7	LC
47	Flonicamid (20)	88.9	1.9	LC	95	Thiophanate-methyl (50)	104.3	11.4	LC
48	Fludioxinil (20)	96.5	16.8	GC	96	Trifloxystrobin (20)	107.2	3.1	LC

Table 1. Spike recoveries for the 96 pesticides in dried cannabis sample.

Limits of quantification (LOQs)

The LOQs were calculated for all 96 pesticides. To determine the LOQs, pesticide-free cannabis samples were spiked with various concentrations of standards ranging from 1–2000 ppb. Sample spike recoveries between 80% and 120% were deemed acceptable. Once the lowest acceptable spike recoveries (lowest concentrated spike) were determined for each pesticide, three separate runs were performed and only after all three runs fell within the acceptable limits was the LOQ established. As shown in Table 2, all LOQ values are within Health Canada's limits.

#	Analyte	LOQ in cannabis (ppb)	LOQ Health Canada (ppb)	Method	#	Analyte	LOQ in cannabis (ppb)	LOQ Health Canada (ppb)	Method
1	Abamectin	20	N/A	LC-MS/MS	49	Fluopyram	20	20	LC-MS/MS
2	Acephate	20	20	LC-MS/MS	50	Hexythiazox	250	N/A	LC-MS/MS
3	Acetamiprid	50	100	LC-MS/MS	51	Imazalil	50	N/A	LC-MS/MS
4	Acequinocyl	100	N/A	LC-MS/MS	52	Imidacloprid	20	20	LC-MS/MS
5	Aldicarb	50	1000	LC-MS/MS	53	Iprodione	20	1000	LC-MS/MS
6	Allethrin	100	200	LC-MS/MS	54	Kinoprene	5000	N/A	GC-MS/MS
7	Azadirachtin	50	1000	LC-MS/MS	55	Kresoxim-methyl	20	N/A	LC-MS/MS
8	Azoxystrobin	20	20	LC-MS/MS	56	Malathion	20	20	LC-MS/MS
9	Benzovindiflupyr	20	20	LC-MS/MS	57	Metalaxyl	20	20	LC-MS/MS
10	Bifenazate	20	20	LC-MS/MS	58	Methiocarb	20	20	LC-MS/MS
11	Bifenthrin	250	N/A	GC-MS/MS	59	Methomyl	20	50	LC-MS/MS
12	Boscalid	20	20	LC-MS/MS	60	Methoprene I	100	N/A	LC-MS/MS
13	Buprofezin	20	20	LC-MS/MS	61	Methyl parathion	100	N/A	LC-MS/MS
14	Carbaryl	20	50	LC-MS/MS	62	Mevinphos I	20	50	LC-MS/MS
15	Carbofuran	20	20	LC-MS/MS	63	MGK-264	5000	N/A	GC-MS/MS
16	Chlorantraniliprole	20	N/A	LC-MS/MS	64	Myclobutanil	20	20	LC-MS/MS
17	Chlorphenapyr	20	N/A	LC-MS/MS	65	Naled	20	N/A	LC-MS/MS
18	Chlorpyrifos	20	N/A	LC-MS/MS	66	Novaluron	50	50	LC-MS/MS
19	Clofentezine	20	20	LC-MS/MS	67	Oxamyl	50	3000	LC-MS/MS
20	Clothianidin	20	50	LC-MS/MS	68	Paclobutrazol	20	20	LC-MS/MS
21	Coumaphos	20	20	LC-MS/MS	69	Permethrin	1000	N/A	GC-MS/MS
22	Cyantranilipole	20	N/A	LC-MS/MS	70	Phenothrin	20	50	LC-MS/MS
23	Cyfluthrin	250	N/A	GC-MS/MS	71	Phosmet	50	N/A	LC-MS/MS
24	Cypermethrin	100	N/A	LC-MS/MS	72	Piperonyl butoxide	50	N/A	LC-MS/MS
25	Cyprodinil	20	N/A	LC-MS/MS	73	Pirimicarb	20	20	LC-MS/MS
26	Daminozide	100	N/A	LC-MS/MS	74	Prallethrin	50	N/A	LC-MS/MS
27	Deltamethrin	100	N/A	GC-MS/MS	75	Propiconazole	100	N/A	LC-MS/MS
28	Diazinon	100	N/A	LC-MS/MS	76	Propoxur	20	20	LC-MS/MS
29	Dichlorvos	20	100	LC-MS/MS	77	Pyraclostrobin	20	20	LC-MS/MS
30	Dimethoate	20	20	LC-MS/MS	78	Pyrethrins II	20	50	LC-MS/MS
31	Dimethomorph	20	N/A	LC-MS/MS	79	Pyridaben	20	50	LC-MS/MS
32	Dinotefuran	20	100	LC-MS/MS	80	Quintozene	250	N/A	GC-MS/MS
33	Dodemorph	20	N/A	LC-MS/MS	81	Resmethrin	100	100	GC-MS/MS
34	Endosulfan-alpha	500	N/A	GC-MS/MS	82	Spinetoram	50	N/A	LC-MS/MS
35	Endosulfan-beta	500	N/A	GC-MS/MS	83	Spinosad A	100	N/A	LC-MS/MS
36	Endosulfan sulfate	500	N/A	LC-MS/MS	84	Spirodiclofen	20	N/A	LC-MS/MS
37	Ethoprophos	20	20	LC-MS/MS	85	Spiromesifen	100	3000	LC-MS/MS
38	Etofenprox	20	N/A	LC-MS/MS	86	Spirotetramat	20	20	LC-MS/MS
39	Etoxazole	20	20	LC-MS/MS	87	Spiroxamine (II)	20	N/A	LC-MS/MS
40	Etridiazol	20	N/A	LC-MS/MS	88	Tebuconazole	20	N/A	LC-MS/MS
41	Fenoxycarb	20	20	LC-MS/MS	89	Tebufenozide	20	20	LC-MS/MS
42	Fenpyroximate	20	20	LC-MS/MS	90	Teflubenzuron	50	50	LC-MS/MS
43	Fensulfothion	20	20	LC-MS/MS	91	Tetrachlorvinphos	20	20	LC-MS/MS
44	Fenthion	50	N/A	LC-MS/MS	92	Tetramethrin	20	100	LC-MS/MS
45	Fenvalerate	1000	N/A	GC-MS/MS	93	Thiacloprid	20	20	LC-MS/MS
46	Fipronil	50	60	LC-MS/MS	93	Thiamethoxam	20	20	LC-MS/MS
40	Flonicamid	20	50	LC-MS/MS	94	Thiophanate-methyl	50	50	LC-MS/MS
48	Fludioxonil	20	20	GC-MS/MS	95	Trifloxystrobin	20	20	LC-MS/MS
10	HadioAofiii	20	20	30 110/110	30	moxystroom	20	20	20 100/100

Table 2. Experimental limits of detection for all 96 pesticides using the LC-MS/MS and GC-MS/MS methods.

Results and Discussion

Pesticides analysis by UPLC-MS/MS

Using the LC-MS/MS method, 84 pesticides were analyzed. The compounds analyzed by LC-MS/MS and the parameters used are listed in Table 2 and Appendix A. Representative MRM chromatograms for the pesticides acetamiprid (50 ppb), cyprodinil (25 ppb), fenoxycarb (25 ppb), and tetrachlorvinphos (25 ppb) in a pesticide-free extracted cannabis matrix are shown in Figure 1.

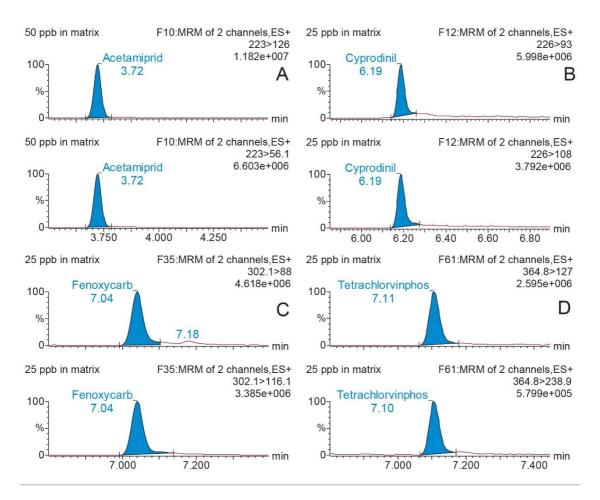


Figure 1. Representative MRM chromatograms showing the primary quantification and the secondary qualifier transition for acetamiprid (A, 50 ppb), cyprodinil (B, 25 ppb), fenoxycarb (C, 25 ppb), and tetrachlorvinphos (D, 25 ppb) in pesticide-free cannabis extracted using the sample preparation protocol reported.

Matrix-matched calibration curves were generated using pesticide-free extracted cannabis. An example of the calibration curves for the pesticides acetamiprid, cyprodinil, fenoxycarb, and tetrachlorvinphos are shown in Figure 2. Linear calibration curves (R²>0.990) for all pesticides were obtained over the range tested as shown in the figure.

Correlation coefficient: r = 0.999105, r² = 0.998212 Correlation coefficient: r = 0.999878, r² = 0.999757 Calibration curve: 8578.36 * × + 1805.61 Calibration curve: 11314.2 * × + -2009.06 Response type: External Std, Area Response type: External Std, Area Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None Α 1500000 1500000 Response Response 1000000 1000000 500000 500000 -0 -0 Conc 50 100 150 200 100 200 -0 50 150 -0 Compound name: Fenoxycarb Compound name: Tetrachlorvinphos Correlation coefficient: r = 0.999424, r² = 0.998849 Correlation coefficient: r = 0.998279, r² = 0.996562 Calibration curve: 6960.64 * × + 2825.22 Calibration curve: 3696.04 * × + 2541.3 Response type: External Std, Area Response type: External Std, Area Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None С 10000000

Compound name: Cyprodinil

2000000

1000000

-0

-0

200

400

600

Response

В

Conc

D

---- Conc 800

Figure 2. Representative examples of calibration curves for acetamiprid (A, 0.78–200 ppb), cyprodinil (B, 0.78–200 ppb), fenoxycarb (C, 0.78–1500 ppb), and tetrachlorvinphos (D, 0.78–800 ppb), demonstrating linearity over the ranges tested for these compounds.

Conc

1500

Pesticides analysis by GC-MS/MS

500

1000

Compound name: Acetamiprid

7500000

5000000

2500000

-0

-0

Response

Analysis of pesticide residues in cannabis also required the use of GC-MS/MS to meet the Canadian pesticide regulations. A complete list of compounds analyzed by GC-MS/MS and the parameters used is provided in Table 2 and Appendix B. Example chromatograms for endosulfan alpha and fenvalerate are shown in Figure 3.

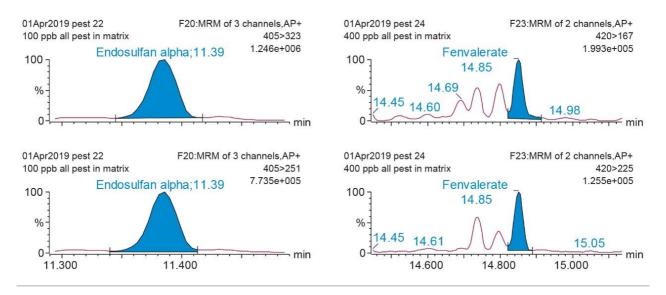
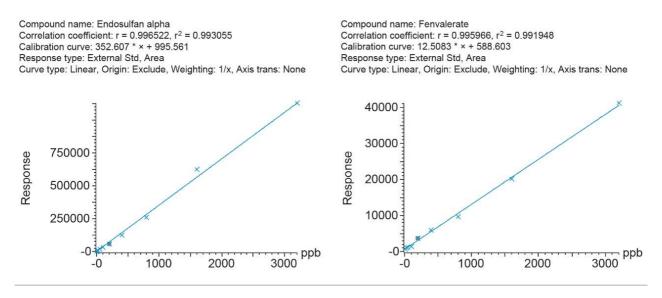
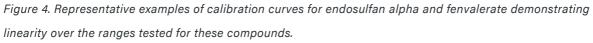




Figure 3. Representative MRM chromatograms showing the primary quantification and the secondary qualifier transition for endosulfan alpha (100 ppb) and fenvalerate at a level and 400 ppb (ng/g) in pesticide-free cannabis extracted using the sample preparation protocol reported.

An example of the calibration curves for the pesticides endosulfan alpha and fenvalerate are shown in Figure 4. Linear calibration curves (R^2 >0.990) for both pesticides were obtained over the range tested, as shown in the figure.

Conclusion

The simple sample extraction and d-SPE clean-up method followed by UPLC-MS/MS and GC-MS/MS analysis provides a rapid, sensitive, and robust workflow for the determination of the Canadian pesticide list in challenging cannabis matrices. Complex multi-residue pesticide analysis in a cannabis matrix was demonstrated using both UPLC and APGC analysis on the same tandem quadrupole instrument (Xevo TQ-S micro) with detection at the maximum action levels for each of the 96 pesticides in the Canadian pesticide list. Having the flexibility of universal source architecture to provide access to both UPLC-MS/MS and GC-MS/MS on the same instrument, allows for an increase of laboratory efficiency, while maintaining required sensitivity and repeatability. This method meets the action levels for the Canadian pesticide list and mycotoxins in cannabis matrices.

References

- Moulins, J. R.; Blais, M.; Montson, K.; Tully, J.; Mohan, W.; Gagnon, M.; McRitchie, T.; Kwong, K.; Snider, N.; Blais, D. R. Multiresidue Method of Analysis of Pesticides in Medical Cannabis. *J. AOAC* 2018, 1101 (6), 1948–1960.
- Health Canada. (2018) Mandatory Cannabis Testing for Pesticide Active Ingredients. https://www.canada.ca/content/dam/phac-aspc/documents/services/publications/drugs-healthproducts/cannabis-testing-pesticide-requirements/cannabis-testing-pesticide-requirements.pdf [accessed on June 11th 2019].
- 3. Kovalczuk, T.; Jech, M.; Poustka, J.; Hajslova, J.; UPLC-MS/MS: A Novel Challenge in Multiresidue Pesticide Analysis in Food *Analytica Chimica Acta* 2006, 577.
- Tienstra, M.; Portoles, T.; Hernandez, F.; Mol, J. G. J. Fast Gas Chromatographic Residue Analysis in Animal Feed Using Split Injection and Atmospheric Pressure Chemical Ionization Tandem Mass Spectrometry J. Chromatogr, A 2015, 1422.
- Cherta, L.; Portoles, T.; Beltran, J.; Pitarch, E.; Mol, J. G. J.; Hernandez, F. Application of Gas Chromatography – Mass Spectrometry with Atmospheric Pressure Chemical Ionization for the Determination of Multiclass Pesticides in Fruits and Vegetables 2013, 1314.

Appendix A.

MS/MS parameters for pesticides using UPLC.

	Analyte	Retention time (min)	MW (g/mol)	Precursor (<i>m/z</i>)	Product (<i>m/z</i>)	cv	CE	Health Canada detection limit (ppb)
				895.46	182.9	76	48	
1	Abamectin	8.65	873.09	895.46	327.02	76	52	N/A
				895.46	751.22	76	44	
	Acephate	1.88	183.2	183.9	94.6	20	25	- 20
	, lespinate			183.9	142.8	20	10	
1	Acetamiprid	3.7	222.67	223	56.1	30	15	- 100
				223	126	30	20	
÷ .	Acequinocyl	9.4	384.51	343.2	115	35	40	— N/A
				343.2 213.1	189.1 89.1	35 35	20	
	Aldicarb	4.37	190.261	213.1	116.1	35	11	- 1000
		Land Section		303.03	90.95	20	44	at second
5	Allethrin	7.92	302.4079	303.03	134.94	20	10	- 200
				703.2	567	10	10	
,	Azadiractin	5.6	720.721	703.2	585	10	10	1000
	, ite and a start			703.2	685	10	10	
		2.152	0.000	404.1	328.9	15	30	
	Azoxystrobin	6.29	403.394	404.1	372	15	16	- 20
	Deservice PA	7.05	200.005	398	322	20	18	~~
	Benzovindiflupyr	7.25	398.235	398	342	20	10	- 20
	Diferente	6 70	200 2502	301.1	170	25	20	
)	Bifenazate	6.72	300.3523	301.1	198	25	10	- 20
	Boscalid	6.46	242 2067	342.9	139.9	25	20	- 20
1	boscand	0.40	343.2067	342.9	307	25	45	20
2	Buprofezin	7.77	305.44	306.1	115.9	20	16	20
-	Buprolezili	1.11	303.44	306.1	201	20	12	20
3	Carbaryl	5.23	201.22	202.1	127	30	22	- 50
·	Garbaryi	0.20	201.22	202.1	145	30	28	50
4	Carbofuran	5.08	221.256	222.11	123	5	20	20
20	ourooraran		22.1200	222.11	165.1	5	10	
5	Chlorantraniliprole	6.08	483.15	481.6	283.9	15	23	— N/A
				481.6	450.9	15	25	
6	Chlorfenapyr	7.5	407.6	409	59	58	16	— N/A
20		1.1768	919911999	409	379	58	10	10000
7	Chlorpyrifos	8.04	350.59	350.1	97 197.9	25 25	33	— N/A
				350.1			19	
8	Clofentezine	7.37	303.146	303	102 138	20 20	35 15	- 20
		00000		250	132	25	15	
9	Clothianidin	3.3	249.678	250	169	25	10	- 50
				363	289	32	24	
0	Coumaphos	7.2	362.77	363	307	32	16	- 20
		1000000		475	286	20	13	
1	Cyantranilipole	5.49	473.715	475	444	20	17	— N/A
				415.8	375.12	6	4	
2	Cypermethrin	7	416.3	415.8	225.12	6	20	– N/A
2	Owner die 1	0.00	005.00	226	93	5	35	NI / N
3	Cyprodinil	6.22	225.29	226	108	5	25	— N/A
	Dominorido	0.0	160 171	161	61	24	12	N1/A
4	Daminozide	0.9	160.171	161	143	24	12	— N/A
5	Diazinon	7.27	304.25	305.1	96.9	20	35	— N/A
9	Diazinun	1.21	304.25	305.1	169	20	22	IN/A
6	Dichlorvos	4.92	220.98	221	79	23	34	- 100
~	Diomotivoa	7.72	220,00	221	109	23	22	100
7	Dimethoate	3.58	229.26	230	124.8	20	22	- 20
•	onnothouto	0.00	220120	230	198.8	20	10	20
8	Dimethomorph	6.41	387.9	388.1	165	15	30	- N/A
CR	10000000000000000000000000000000000000		0.0000	388.1	300.9	15	20	0.000
9	Dinotefuran	2.22	202.214	203	113	15	10	- 100
				203	129	15	10	
0	Dodemorph	5.6	281.48	282.1	98	40	28	— N/A
		1005255	100000 NO.1977	282.1	116	40	21	2005220.0
1	Endofulfan Sulfate	6.59	422.903	423.04	124.97	14	34	— N/A
-				423.04	204.12	14	24	
	Ethoprophos	6.87	242.332	242.97	97 130.95	18 18	31 20	- 20
2				747 47	130.95	18	20	
2				394.3	106.9	20	43	

	Analyte	Retention time (min)	MW (g/mol)	Precursor (<i>m/z</i>)	Product (<i>m/z</i>)	cv	CE	Health Canada detection limit (ppb)
34	Etoxazole	8.2	359.417	360.2	57.2	60	25	- 20
				360.2	141.1	60	25	
5	Etridiazol	4.21	247.518	247.02	148.99 205.97	10	12	— N/A
				302.1	88	10	20	
6	Fenoxycarb	7.03	301.34	302.1	116.1	10	11	- 20
57	Fenpyroximate	8.31	421.497	422.2	138.1	5	30	20
<u></u>				422.2	366.1	5	20	
8	Fensulfothion	5.83	308.347	309	157.1	36 36	25 22	20
				279	104.9	25	25	001000
9	Fenthion	7.12	278.33	279	168.9	25	18	— N/A
				453.9	250	42	25	
0	Fipronil	7.03	437.15	453.9	330	42	13	60
				453.9	368.1	5	25	- 91
11	Flonicamid	2.74	229.1586	230.1 230.1	148.08 203.7	35 35	25	- 50
_				397	173.2	30	41	
2	Fluopyram	6.78	396.717	397	208.1	30	35	- 20
3	Hexythiazox	8.11	352.877	353	168.1	10	25	— N/A
9	Trexytrilazox	0.11	552.677	353	228.1	10	15	N/A
4	Imazalil	5.25	297.18	297	69	25	20	– N/A
	201010-01-04-0			297 256.1	159 174.9	25 25	20	0.003241
5	Imidacloprid	3.36	255.661	256.1	209	25	12	- 20
	1000000			330	245	35	15	
6	Iprodione	6.99	330.165	330	288.1	35	15	- 1000
7	Kresoxim-methyl	7.13	313.353	314.2	115.9	30	12	— N/A
	Resonantinethy	7.10	010.000	314.2	131	30	25	10/4
8	Malathion	6.48	330.358	331	98.9	30	25	- 20
			No. Contraction	331 280.1	126.9	30 10	12 20	
9	Metalaxyl	5.88	279.33	280.1	220.1	10	15	- 20
0	Methiocarb	6.29	225.306	226	121	25	20	20
0	Methiocarb	0.29	220.300	226	169	25	10	20
1	Methomyl	2.74	162.2101	162.9	88	15	10	- 50
		27.542A)		162.9	105.9	15	10	17.7.2
2	Methoprene	6.05	310.48	312.41	72.08 81.06	82 82	38 38	— N/A
		12/22		264	125.1	38	18	
3	Methyl parathion	6.11	263.204	264	232.1	38	14	— N/A
4	Mevinphos	3.75	224.1483	225.1	127.1	15	15	- 50
7	weinprios	5.75	224.1405	225.1	193.1	15	10	50
5	Myclobutanil	6.62	288.779	289.1	70.2	25	15	- 20
	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		544 Min 1997 Min 19	289.1 382.8	125.1 109	25 30	30 27	
6	Naled	5.94	380.778	382.8	103	30	17	— N/A
-	Nambura		100 700	493.02	141	5	30	50
7	Novaluron	7.77	492.706	493.02	158.03	5	15	- 50
8	Oxamyl	2.66	219.259	237	72	15	10	3000
<u> </u>				237	90	15	10	
9	Paclobutrazol	6.49	293.79	294.1	70.2	10	20 35	- 20
_	_2 7 8			352.89	195.02	32	14	
0	Phenothrin	6.48	350.451	352.89	227.14	32	16	- 50
51	Phosmet	6	317.314	318	77	28	46	— N/A
	Thoshiel	U	017/014	318	160	28	22	11/1
2	Piperonyl butoxide	7.98	338.438	356.3	119	20	35	— N/A
		12.0		356.3 239.1	176.9 72	20 25	10 20	
3	Pirimicarb	4	238.29	239.1	182.1	25	15	- 20
	Deallashala	7.00	200 4	301.2	133	5	12	
4	Prallethrin	7.62	300.4	301.2	169	5	9	— N/A
5	Propiconazole	7.37	342.22	342.1	69.1	35	30	— N/A
-	. representation		S ILIER	342.1	158.9	35	20	
6	Propoxur	5.02	209.2417	210.1 210.1	92.9	15 15	25	20
				388.1	163	25	25	
7	Pyraclostrobin	7.34	387.82	388.1	193.9	25	12	- 20
8	Pyrethrin	7.64	371.461	373.2	133	37	19	- 50
		7.04	3/1.401	373.2	161	37	8	50

	Analyte	Retention time (min)	MW (g/mol)	Precursor (<i>m/z</i>)	Product (<i>m/z</i>)	cv	CE	Health Canada detection limit (ppb)
69	Pyridaben	8.55	364.93	365.1	147.1	5	24	- 50
				365.1	309.1	5	12	
70	Spinetoram	7.49	748.011	748.53	98.07	60	35	— N/A
				748.53	142.16	60	30	
71	Spinosad	7.05	731.968	732.6	98.1	35	35	— N/A
				732.6	142	35	30	
0	Spirodiclofen	8.37	411.319	411.14	71.16	35	15	N/A
2				411.14	313.1	35	10	
	Spiromesifen	8.24	370.4819	371.1	273.1	35	5	
3				388.2	273.1	35	25	
27	Spirotetramat	6.81	373.449	374	302	20	30	20
74				374	330	20	15	
_	Spiroxamine	6.06	297.476	298	100	40	32	— N/A
5				298	144	40	20	
~	Tebuconazole	7.18	307.82	308.2	70.1	30	24	N/A
76				308.2	124.9	30	40	
_	Tebufenozide	7.05	352.478	353.22	105.13	10	20	20
7				353.22	133.14	10	10	
	Teflubenzuron	7.92	381.108	381	141	25	30	- 50
8				381	158	25	15	
		7,1	365.952	364.8	127	32	16	- 20
9	Tetrachlorvinphos			364.8	238.9	32	20	
	Tetramethrin	6.49	331.406	330.91	98.95	34	18	100
80				330.91	126.99	34	10	
	Thiacloprid	4.02	252.72	253	90	35	40	- 20
81				253	125.8	35	20	
82	Thiamethoxam	2.86	291.71	292	132	25	20	20
				292	211.2	25	10	
83	Thiophanate methyl	4.92	342.39	343	93	25	35	- 50
				343	151	25	20	
84	Trifloxystrobin	7.59	408.37	409.2	145	25	40	20
				409,2	185,9	25	14	

Appendix B

 MS/MS parameters for pesticides using GC.

	Analyte	Retention time (min)	MW (g/mol)	Precursor (<i>m/z</i>)	Product (<i>m/z</i>)	CE	Health Canada detection limit (ppb)
	Bifenthrin	12.78	422.87	181	115	30	20
1				181	165	20	
				181	166	30	
2	Cyfluthrin	14.07	434.3	434	91	30	N/A
				434	127	30	
				434	191	10	
2	Deltamethrin	15.75	505.21	506	93	50	– N/A
3				506	281	15	
a.,	Endosulfan Alpha	11.38	406.90	405	251	20	– N/A
4				405	323	10	
-	Endosulfan Beta	11.98	406.90	405	217	30	- N/A
5				405	323	10	
~	Fenvelarate	16.32	419.9	419.8	124.8	40	N1/A
6				419.8	286.9	10	— N/A
-	Fludioxonil	11.58	248.18	248	154	20	- 20
7				248	182	20	
	Kinoprene	10.73	276.42	277	78.99	30	N/A
8				277	109	30	
				277	132	30	
0	MGK-264	10.8	275.38	276.2	98	20	– N/A
9				276.2	210.1	10	
	Permethrin	13.75	391.28	355	319	10	N/A
10				391	183	30	
				391	355	10	
	Quintozine	9.31	250.32	248	213	30	N/A
11				295.8	249.82	30	
				295.8	278.89	30	
12	Resmethrin	11.89	338.44	338.9	170.9	15	- 100
				338.9	292.9	10	

Featured Products

MassLynx MS Software <https://www.waters.com/513662>

Waters Atmospheric Pressure Gas Chromatography (APGC) https://www.waters.com/10100362

ACQUITY UPLC H-Class PLUS System < https://www.waters.com/10138533>

Xevo TQ-S micro Triple Quadrupole Mass Spectrometry https://www.waters.com/134798856>

720006711, November 2019

©2019 Waters Corporation. All Rights Reserved.